101 research outputs found

    Machine learning regression on hyperspectral data to estimate multiple water parameters

    Full text link
    In this paper, we present a regression framework involving several machine learning models to estimate water parameters based on hyperspectral data. Measurements from a multi-sensor field campaign, conducted on the River Elbe, Germany, represent the benchmark dataset. It contains hyperspectral data and the five water parameters chlorophyll a, green algae, diatoms, CDOM and turbidity. We apply a PCA for the high-dimensional data as a possible preprocessing step. Then, we evaluate the performance of the regression framework with and without this preprocessing step. The regression results of the framework clearly reveal the potential of estimating water parameters based on hyperspectral data with machine learning. The proposed framework provides the basis for further investigations, such as adapting the framework to estimate water parameters of different inland waters.Comment: This work has been accepted to the IEEE WHISPERS 2018 conference. (C) 2018 IEE

    Fusion of hyperspectral and ground penetrating radar to estimate soil moisture

    Full text link
    In this contribution, we investigate the potential of hyperspectral data combined with either simulated ground penetrating radar (GPR) or simulated (sensor-like) soil-moisture data to estimate soil moisture. We propose two simulation approaches to extend a given multi-sensor dataset which contains sparse GPR data. In the first approach, simulated GPR data is generated either by an interpolation along the time axis or by a machine learning model. The second approach includes the simulation of soil-moisture along the GPR profile. The soil-moisture estimation is improved significantly by the fusion of hyperspectral and GPR data. In contrast, the combination of simulated, sensor-like soil-moisture values and hyperspectral data achieves the worst regression performance. In conclusion, the estimation of soil moisture with hyperspectral and GPR data engages further investigations.Comment: This work has been accepted to the IEEE WHISPERS 2018 conference. (C) 2018 IEE

    Advancing Ground-Based Radar Processing for Bridge Infrastructure Monitoring

    Get PDF
    In this study, we further develop the processing of ground-based interferometric radar measurements for the application of bridge monitoring. Applying ground-based radar in such complex setups or long measurement durations requires advanced processing steps to receive accurate measurements. These steps involve removing external influences from the measurement and evaluating the measurement uncertainty during processing. External influences include disturbances caused by objects moving through the signal, static clutter from additional scatterers, and changes in atmospheric properties. After removing these influences, the line-of-sight displacement vectors, measured by multiple ground-based radars, are decomposed into three-dimensional displacement components. The advanced processing steps are applied exemplarily on measurements with two sensors at a prestressed concrete bridge near Coburg (Germany). The external influences are successfully removed, and two components of the three-dimensional displacement vector are determined. A measurement uncertainty of less than 0.1mm is achieved for the discussed application

    Supervised Machine Learning Approaches on Multispectral Remote Sensing Data for a Combined Detection of Fire and Burned Area

    Get PDF
    Bushfires pose a severe risk, among others, to humans, wildlife, and infrastructures. Rapid detection of fires is crucial for fire-extinguishing activities and rescue missions. Besides, mapping burned areas also supports evacuation and accessibility to emergency facilities. In this study, we propose a generic approach for detecting fires and burned areas based on machine learning (ML) approaches and remote sensing data. While most studies investigated either the detection of fires or mapping burned areas, we addressed and evaluated, in particular, the combined detection on three selected case study regions. Multispectral Sentinel-2 images represent the input data for the supervised ML models. First, we generated the reference data for the three target classes, burned, unburned, and fire, since no reference data were available. Second, the three regional fire datasets were preprocessed and divided into training, validation, and test subsets according to a defined schema. Furthermore, an undersampling approach ensured the balancing of the datasets. Third, seven selected supervised classification approaches were used and evaluated, including tree-based models, a self-organizing map, an artificial neural network, and a one-dimensional convolutional neural network (1D-CNN). All selected ML approaches achieved satisfying classification results. Moreover, they performed a highly accurate fire detection, while separating burned and unburned areas was slightly more challenging. The 1D-CNN and extremely randomized tree were the best-performing models with an overall accuracy score of 98 % on the test subsets. Even on an unknown test dataset, the 1D-CNN achieved high classification accuracies. This generalization is even more valuable for any use-case scenario, including the organization of fire-fighting activities or civil protection. The proposed combined detection could be extended and enhanced with crowdsourced data in further studies

    Determining and Investigating the Variability of Bridges’ Natural Frequencies with Ground-Based Radar

    Get PDF
    Assessing the condition of bridge infrastructure requires estimating damage-sensitive features from reliable sensor data. This study proposes to estimate natural frequencies from displacement measurements of a ground-based interferometric radar (GBR). These frequencies are determined from the damped vibration after each vehicle crossing with least squares and compared to a Frequency Domain Decomposition result. We successfully applied the approach in an exemplary measurement campaign at a bridge near Coburg (Germany) with an additional comparison to commonly used strain sensors. Since temperature greatly influences natural frequencies, linear regression is used to correct this influence. A simulation shows that GBR, combined with the least squares approach, achieves the lowest uncertainty and variation in the linear regression, indicating better damage detection results. However, the success of the damage detection highly depends on correctly determining the temperature influence, which might vary throughout the structure. Future work should further investigate the biases and variability of this influence

    Soil Texture Classification with 1D Convolutional Neural Networks based on Hyperspectral Data

    Get PDF
    Soil texture is important for many environmental processes. In this paper, we study the classification of soil texture based on hyperspectral data. We develop and implement three 1-dimensional (1D) convolutional neural networks (CNN): the LucasCNN, the LucasResNet which contains an identity block as residual network, and the LucasCoordConv with an additional coordinates layer. Furthermore, we modify two existing 1D CNN approaches for the presented classification task. The code of all five CNN approaches is available on GitHub (Riese, 2019). We evaluate the performance of the CNN approaches and compare them to a random forest classifier. Thereby, we rely on the freely available LUCAS topsoil dataset. The CNN approach with the least depth turns out to be the best performing classifier. The LucasCoordConv achieves the best performance regarding the average accuracy. In future work, we can further enhance the introduced LucasCNN, LucasResNet and LucasCoordConv and include additional variables of the rich LUCAS dataset

    Soil Texture Classification with 1D Convolutional Neural Networks based on Hyperspectral Data

    Get PDF
    Soil texture is important for many environmental processes. In this paper, we study the classification of soil texture based on hyperspectral data. We develop and implement three 1-dimensional (1D) convolutional neural networks (CNN): the LucasCNN, the LucasResNet which contains an identity block as residual network, and the LucasCoordConv with an additional coordinates layer. Furthermore, we modify two existing 1D CNN approaches for the presented classification task. The code of all five CNN approaches is available on GitHub (Riese, 2019). We evaluate the performance of the CNN approaches and compare them to a random forest classifier. Thereby, we rely on the freely available LUCAS topsoil dataset. The CNN approach with the least depth turns out to be the best performing classifier. The LucasCoordConv achieves the best performance regarding the average accuracy. In future work, we can further enhance the introduced LucasCNN, LucasResNet and LucasCoordConv and include additional variables of the rich LUCAS dataset.Comment: Accepted to the ISPRS Geospatial Week 2019 in Enschede (NL

    Estimating Chlorophyll a Concentrations of Several Inland Waters with Hyperspectral Data and Machine Learning Models

    Get PDF
    Water is a key component of life, the natural environment and human health. For monitoring the conditions of a water body, the chlorophyll a concentration can serve as a proxy for nutrients and oxygen supply. In situ measurements of water quality parameters are often time-consuming, expensive and limited in areal validity. Therefore, we apply remote sensing techniques. During field campaigns, we collected hyperspectral data with a spectrometer and in situ measured chlorophyll a concentrations of 13 inland water bodies with different spectral characteristics. One objective of this study is to estimate chlorophyll a concentrations of these inland waters by applying three machine learning regression models: Random Forest, Support Vector Machine and an Artificial Neural Network. Additionally, we simulate four different hyperspectral resolutions of the spectrometer data to investigate the effects on the estimation performance. Furthermore, the application of first order derivatives of the spectra is evaluated in turn to the regression performance. This study reveals the potential of combining machine learning approaches and remote sensing data for inland waters. Each machine learning model achieves an R2-score between 80 % to 90 % for the regression on chlorophyll a concentrations. The random forest model benefits clearly from the applied derivatives of the spectra. In further studies, we will focus on the application of machine learning models on spectral satellite data to enhance the area-wide estimation of chlorophyll a concentration for inland waters.Comment: Accepted at ISPRS Geospatial Week 2019 in Ensched
    • …
    corecore